OUTCOME 4

Circles

1 Representing a Circle

The equation of a circle with centre (a, b) and radius r units is:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

This is given in the exam.
For example, the equation of a circle with centre $(2,-1)$ and radius 4 is:

$$
\begin{aligned}
& (x-2)^{2}+(y+1)^{2}=4^{2} \\
& (x-2)^{2}+(y+1)^{2}=16
\end{aligned}
$$

Note that the equation of a circle with centre $(0,0)$ is of the form $x^{2}+y^{2}=r^{2}$.

EXAMPLE

Find the equation of the circle with centre $(1,-3)$ and radius $\sqrt{3}$ units.

$$
\begin{aligned}
(x-a)^{2}+(y-b)^{2} & =r^{2} \\
(x-1)^{2}+(y-(-3))^{2} & =(\sqrt{3})^{2} \\
(x-1)^{2}+(y+3)^{2} & =3
\end{aligned}
$$

2 Testing a Point

Given a circle with centre (a, b) and radius r units, we can determine whether a point (p, q) lies within, outwith or on the circumference using the following rules:

$$
(p-a)^{2}+(q-b)^{2}<r^{2} \Leftrightarrow \text { the point lies within the circle }
$$

$(p-a)^{2}+(q-b)^{2}=r^{2} \Leftrightarrow$ the point lies on the circumference of the circle $(p-a)^{2}+(q-b)^{2}>r^{2} \Leftrightarrow$ the point lies outwith the circle

EXAMPLE

A circle has the equation $(x-2)^{2}+(y+5)^{2}=29$.
Determine whether the points $(2,1),(7,-3)$ and $(3,-4)$ lie within, outwith or on the circumference of the circle.

Point $(2,1)$:

$$
\begin{aligned}
& (x-2)^{2}+(y+3)^{2} \\
= & (2-2)^{2}+(1+5)^{2} \\
= & 0^{2}+6^{2} \\
= & 36>29
\end{aligned}
$$

Point (7, -3):
$(x-2)^{2}+(y+3)^{2}$
$=(7-2)^{2}+(-3+5)^{2}$
$=5^{2}+2^{2}$

$$
=29
$$

So outwith the circle. So on the circumference. So within the circle.

3 The General Equation of a Circle

The equation of a circle can be written in the form:

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

where the centre is $(-g,-f)$ and the radius is $\sqrt{g^{2}+f^{2}-c}$ units.
This is given in the exam.
Note that the above equation only represents a circle if $g^{2}+f^{2}-c>0$, since:

- if $g^{2}+f^{2}-c<0$ then we cannot obtain a real value for the radius
- if $g^{2}+f^{2}-c=0$ then the radius is zero - the equation represents a point.

EXAMPLE

1. Find the radius and centre of the circle with equation

$$
x^{2}+y^{2}+4 x-8 y+7=0 .
$$

Comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$:

$$
\begin{array}{ccr}
2 g=4 \text { so } g=2 & \text { Centre is }(-g,-f) & \text { Radius is } \\
2 f=-8 \text { so } f=-4 & =(-2,4) & \\
c=7 & & \sqrt{2^{2}+f^{2}-c} \\
c=7)^{2}-7 \\
& =\sqrt{4+16-7} \\
& =\sqrt{13} \text { units }
\end{array}
$$

2. Find the radius and centre of the circle with equation

$$
2 x^{2}+2 y^{2}-6 x+10 y-2=0
$$

The equation must be in the form $x^{2}+y^{2}+2 g x+2 f y+c=0$, so divide each term by 2 :

$$
x^{2}+y^{2}-3 x+5 y-1=0
$$

Now compare with $x^{2}+y^{2}+2 g x+2 f y+c=0$:

$$
\begin{array}{crl}
2 g=-3 \text { so } g=-\frac{3}{2} & \text { Centre is }(-g,-f) & \text { Radius is } \\
\begin{aligned}
& 2 f=5 \text { so } f=\frac{5}{2}=\left(\frac{3}{2},-\frac{5}{2}\right) \\
& c=-1
\end{aligned} & =\sqrt{\left(-\frac{3}{2}\right)^{2}+\left(\frac{5}{2}\right)^{2}+1} \\
& =\sqrt{\frac{9}{4}+\frac{25}{4}+\frac{4}{4}} \\
& =\sqrt{\frac{38}{4}} \\
& =\frac{\sqrt{38}}{2} \text { units }
\end{array}
$$

3. Explain why $x^{2}+y^{2}+4 x-8 y+29=0$ is not the equation of a circle.

Comparing with $x^{2}+y^{2}+2 g x+2 f y+c=0$:

$$
\begin{array}{rlrl}
2 g=4 \text { so } g & =2 & g^{2}+f^{2}-c & =2^{2}+(-4)^{2}-29 \\
2 f=-8 \text { so } f & =-4 & & =-9<0 \\
c & =29 &
\end{array}
$$

The equation does not represent a circle since $g^{2}+f^{2}-c>0$ is not satisfied.

4 Intersection of a Line and a Circle

A straight line and circle can have two, one or no points of intersection:

two intersections

one intersection

no intersections

If a line and a circle only touch at one point, then the line is a tangent to the circle at that point. To find out how many times a line and circle meet, we can use substitution.

EXAMPLES

1. Find the points where the line with equation $y=3 x$ intersects the circle with equation $x^{2}+y^{2}=20$.

$$
\left.\begin{array}{rlr}
x^{2}+y^{2} & =20 & \\
x^{2}+(3 x)^{2} & =20 & \\
x^{2}+9 x^{2} & =20 & \\
10 x^{2} & =20 & \\
x^{2} & =2 \\
x & = \pm \sqrt{2} & \\
(a b)^{m}=a
\end{array}\right)
$$

So the circle and the line meet at $(\sqrt{2}, 3 \sqrt{2})$ and $(-\sqrt{2},-3 \sqrt{2})$.
2. Find the points where the line with equation $y=2 x+6$ and circle with equation $x^{2}+y^{2}+2 x+2 y-8=0$ intersect.
Substitute $y=2 x+6$ into the equation of the circle:

$$
\begin{aligned}
& x^{2}+(2 x+6)^{2}+2 x+2(2 x+6)-8=0 \\
& x^{2}+(2 x+6)(2 x+6)+2 x+4 x+12-8=0 \\
& x^{2}+4 x^{2}+24 x+36+2 x+4 x+12-8=0 \\
& 5 x^{2}+30 x+40=0 \\
& 5\left(x^{2}+6 x+8\right)=0 \\
& (x+2)(x+4)=0 \\
& x+2=0 \\
& x=-2 \Rightarrow y=2(-2)+6=2 \\
& \begin{aligned}
x+4 & =0 \\
x & =-4 \Rightarrow y=2(-4)+6=-2
\end{aligned}
\end{aligned}
$$

So the line and circle meet at $(-2,2)$ and $(-4,-2)$.

5 Tangents to Circles

As we have seen a line is a tangent if it intersects the circle at only one point.
To show that a line is a tangent to a circle, the equation of the line can be substituted into the equation of the circle, and solved - there should only be one solution.

EXAMPLE

Show that the line with equation $x+y=4$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x+2 y-22=0$.

Substitute y for equation of straight line:

$$
\begin{aligned}
x^{2}+y^{2}+6 x+2 y-22 & =0 \\
x^{2}+(4-x)^{2}+6 x+2(4-x)-22 & =0 \\
x^{2}+(4-x)(4-x)+6 x+2(4-x)-22 & =0 \\
x^{2}+16-8 x+x^{2}+6 x+8-2 x-22 & =0 \\
2 x^{2}-4 x+2 & =0 \\
2\left(x^{2}-2 x+1\right) & =0 \\
x^{2}-2 x+1 & =0
\end{aligned}
$$

Then
(i) factorise
or
(ii) use the discriminant

$$
\begin{gathered}
x^{2}-2 x+1=0 \\
(x-1)(x-1)=0 \\
x-1=0 \quad x-1=0 \\
x=1 \quad x=1
\end{gathered}
$$

Since the solutions are equal, the line is a tangent to the circle.

$$
\begin{array}{ll}
\quad x^{2}-2 x+1=0 \\
a=1 & b^{2}-4 a c \\
b=-2 & =(-2)^{2}-4(1 \times 1) \\
c=1 & =4-4 \\
& =0
\end{array}
$$

Since $b^{2}-4 a c=0$, the line is a tangent to the circle.

Note

If the point of contact is required then method (i) is more efficient.
To find the point, substitute the value found for x into the equation of the line (or circle) to calculate the corresponding y-coordinate.

6 Equations of Tangents to Circles

If the point of contact between a circle and a tangent and is known, then the equation of the tangent can be calculated.

If a line is a tangent to a circle, then the radius will meet at the tangent at right angles. The gradient of this radius can be calculated, since the centre and point of contact are known.

Using $m_{\text {radius }} \times m_{\text {tangent }}=-1$, the gradient of the tangent can be found.

The equation can then be found using $y-b=m(x-a)$, since the point is known, and the gradient has just been calculated.

EXAMPLE
Show that $A(1,3)$ lies on the circle $x^{2}+y^{2}+6 x+2 y-22=0$ and find the equation of the tangent at A.

Substitute point into equation of circle:

$$
\begin{aligned}
& x^{2}+y^{2}+6 x+2 y-22 \\
= & 1^{2}+3^{2}+6(1)+2(3)-22 \\
= & 1+9+6+6-22 \\
= & 0
\end{aligned}
$$

Since this satisfies the equation of the circle, the point must lie on the circle.
Find gradient between the centre $(-3,-1)$ and point $(1,3)$:

$$
\begin{aligned}
m_{\text {radius }} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3+1}{1+3} \\
& =1 \text { so } m_{\text {tangent }}=-1 \text { since } m_{\text {radius }} \times m_{\text {tangent }}=-1
\end{aligned}
$$

Find equation of tangent using point $(1,3)$ and gradient $m=-1$:

$$
\begin{aligned}
y-b & =m(x-a) \\
y-3 & =-(x-1) \\
y-3 & =-x+1 \\
y & =-x+4 \\
x+y-4 & =0
\end{aligned}
$$

Therefore the equation of the tangent to the circle at A is $x+y-4=0$.

7 Intersection of Circles

Consider two circles with radii r_{1} and r_{2} with $r_{1}>r_{2}$.
Let d be the distance between the centres of the two circles.

There are three cases to consider.

The circles
do not touch
$d>r_{1}+r_{2}$

They meet at one point only

Externally

They meet at two distinct points

Internally

$d<r_{1}-r_{2}$

EXAMPLES

1. Circle P has centre $(-4,-1)$ and radius 2 units, circle Q has equation $x^{2}+y^{2}-2 x+6 y+1=0$. Show that the circles P and Q do not touch.
To find the centre and radius of Q :
Compare with $x^{2}+y^{2}+2 g x+2 f y+c=0$:

$$
\begin{aligned}
2 g=-2 \text { so } g & =-1 & \text { Centre is }(-g,-f) & \text { Radius } r_{\mathrm{Q}}
\end{aligned}=\sqrt{g^{2}+f^{2}-c}+(1,-3) \quad \begin{array}{ll}
2 f=6 \text { so } f=3 & \\
& =\sqrt{1+9-1} \\
c=1 & \\
& =\sqrt{9} \\
& =3 \text { units }
\end{array}
$$

We know P has centre $(-4,-1)$ and radius $r_{\mathrm{P}}=2$ units .
So the distance between the centres $d=\sqrt{(1+4)^{2}+(-3+1)^{2}}$

$$
\begin{aligned}
& =\sqrt{5^{2}+(-2)^{2}} \\
& =\sqrt{29} \simeq 5.39 \text { units }
\end{aligned}
$$

Since $r_{\mathrm{P}}+r_{\mathrm{Q}}=3+2=5<d$, the circles P and Q do not touch.
2. Circle R has equation $x^{2}+y^{2}-2 x-4 y-4=0$, and circle S has equation $(x-4)^{2}+(y-6)^{2}=4$. Show that the circles R and S touch externally.

To find the centre and radius of R :
Compare with $x^{2}+y^{2}+2 g x+2 f y+c=0$:

$$
\begin{aligned}
2 g=-2 \text { so } g & =-1 & \text { Centre is }(-g,-f) & \text { Radius } r_{\mathrm{R}}
\end{aligned}=\sqrt{g^{2}+f^{2}-c}
$$

To find the centre and radius of S :
Compare with $(x-a)^{2}+(y-b)^{2}=r^{2}$:

$$
\begin{aligned}
a & =4 \quad \text { Centre is }(a, b) \quad \text { Radius } r_{S}=2 \text { units } \\
b & =6 \\
r^{2}=4 \text { so } r & =2
\end{aligned}
$$

So the distance between the centres $d=\sqrt{(1-4)^{2}+(2-6)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-3)^{2}+(-4)^{2}} \\
& =\sqrt{25} \\
& =5 \text { units }
\end{aligned}
$$

Since $r_{\mathrm{R}}+r_{\mathrm{S}}=3+2=5=d$, the circles R and S touch externally.

