Higher Circles Exam Revision

1. The circle below, centre C , has as its equation $x^{2}+y^{2}-4 x-10 y+19=0$. $\mathrm{M}(1,3)$ is the mid-point of the chord AB .

(a) Write down the coordinates of C , the centre of the circle.
(b) Show that the equation of the chord AB can be written as $x=7-2 y$.
2. A circle, centre $\mathrm{C}(8, k)$, has the points $\mathrm{P}(2,-2)$ and Q on its circumference as shown.
$\mathrm{M}(0,2)$ is the mid-point of the chord PQ .
(a) Find the coordinates of Q .
(b) Given that radius CQ is horizontal, write down the value of k, the y-coordinate of C .
(c) Hence establish the equation of the circle.

3. A circle passes through the origin and has the point $C(0,5)$ as its centre.
(a) Establish the equation of this circle giving your answer in expanded form.
(b) The point $\mathrm{P}(4, k)$ lies on the circumference of this circle as shown.
Find algebraically the value of k.
5
(c) Find the equation of the tangent to the circle at P .

4. Two circles, both with the same radius, touch extenally at T as shown below.

The circle with A as its centre has equation $x^{2}+y^{2}-4 x+2 y-15=0$.
Line L_{1} is the common tangent to both circles through T and has as its equation $y=2 x+5$.
(a) Find the coordinates of T, the point of tangency.
(b) Find the coordinates of B and hence write down the equation of the other circle in the diagram.

5. Consider the diagram below.

The circle centre C_{1} has as its equation $(x+4)^{2}+y^{2}=52$.
The point $\mathrm{P}(0, k)$ lies on the circumference of this circle and the tangent to this circle through P has been drawn.

A second circle with centre C_{2} is also shown.

(a) What is the value of k ?
(b) Hence find the equation of the tangent through P .
(c) The tangent through P passes through C_{2} the centre of the second circle. State the coordinates of C_{2}.
(d) Given that the second circle has a radius of 8 units, calculate the distance marked \boldsymbol{d} on the diagram, giving your answer correct to 1 decimal place.

Question 1

(a) $\quad 1 \quad \mathrm{C}(2,5)$
(b) $\cdot 1 \quad M_{c m}=\frac{5-3}{2-1}=2$
-2 $M_{A B}=-\frac{1}{2}$

- $3 y-3=-\frac{1}{2}(x-1)$

$$
2 y-6=-x+1
$$

$$
x=7-2 y
$$

(c) $\cdot 1 \quad(7-2 y)^{2}+y^{2}-4(7-2 y)-10 y+19=0$
-2 $5 y^{2}-30 y+40=0$

- $3(5(y-4)(y-2)-0 \therefore y=4, y=2$
- $4 y=4$ then $x=-1, y=2$ when $x=3$

Question 2

(a) $\quad 1 \mathrm{Q}(-2,6)$
(b) $\quad 1 \mathrm{k}=6$
(c) •1 strategy

- $2 r$ can be found from horiz. line but some pupils will use points P and C .

$$
r^{2}=6^{2}+8^{2}=100
$$

- $3(x-8)^{2}+(y-6)^{2}=100$

Question 3

(a) $\quad 1 \quad r=5$

- $2(x-a)^{2}+(y-b)^{2}=r^{2}$
- $3(x-0)^{2}+(y-5)^{2}=25$
- $4 x^{2}+y^{2}-10 y+25-25=0$
(b) $\quad \cdot 1 \quad 4^{2}+k^{2}-10 k=0$
- $2 k^{2}-10 k+16=0$
-3 $(k-8)(k-2)=0$
- $4 \quad \therefore k=8$
- $5 k=2$
(c) •1 $\quad m_{r}=\frac{2-5}{4-0}=-\frac{3}{4}$
- $2 m_{\text {tan }}=\frac{4}{3}$
-3 $y-2=\frac{4}{3}(x-4)$

Question 4

(a) ans: (-2,1)
(3 marks)
${ }^{1}$ substitutes eq.of line in eq. of circle $-{ }^{1} x^{2}+(2 x+5)^{2}-4 x+2(2 x+5)-15=0$
$-_{3}^{2}$ simplifies and solves for $x \quad{ }_{3}^{2} 5(x+2)^{2}=0 ; x=-2$
$-^{3}$ substitutes to find $y \quad-^{3} \quad y=2(-2)+5 ; \mathrm{y}=1$
(b) ans: $(x+6)^{2}+(y-3)^{2}=20 \quad$ (3 marks)
_ ${ }^{1}$ establishes coordinates of B
${ }^{2}$ finds r^{2}

- ${ }^{3}$ substitutes into general circle equation

$$
\begin{array}{ll}
{ }^{1} & \mathrm{~B}(-6,3) \\
{ }^{2} & r^{2}=20 \\
{ }^{3} & (x+6)^{2}+(y-3)^{2}=20
\end{array}
$$

Question 5

(a) ans: $k=6$

- ${ }^{1}$ knows to substitute point
${ }^{2}$ establishes value of k
(2 marks)

$$
\begin{aligned}
& { }^{-1} \quad(0+4)^{2}+k^{2}=52 \\
& -^{2} \quad k=6
\end{aligned}
$$

(b) ans: $y=-\frac{2}{3} x+6$
(4 marks)
_ ${ }^{1}$ finds coordinates of C_{1}

$$
\begin{array}{ll}
-^{1} & \mathrm{C}(-4,0) \\
-^{2} & m_{C_{1} P}=\frac{6}{4}=\frac{3}{2} \\
-^{3} & m_{\tan }-\frac{2}{3} \\
-^{4} & y=-\frac{2}{3} x+6
\end{array}
$$

(c) ans: $\mathrm{C}_{2}(\mathbf{9}, \mathbf{0})$

(1 mark)

${ }^{1} \quad$ subs point, solves for x and states point $\quad \quad^{1} \quad 0=-\frac{2}{3} x+6 ; x=9 ;(9,0)$
(d) ans: 2.2 units
(3 marks)
$\begin{array}{ll}{ }^{1} & \text { finds radius } \mathrm{C}_{1} \text { circle } \\ -_{2} & \text { finds distance between centres } \\ - & \text { establishes } d\end{array}$

$$
\begin{aligned}
& { }^{1} \quad \text { radius } \mathrm{C}_{1}=7.2 \\
& -{ }_{2} \mathrm{C}_{1} \mathrm{C}_{2}=13 \\
& -\quad d=(7.2+8)-13=2.2
\end{aligned}
$$

