Higher Circles Exam Revision

1. The circle below, centre C, has as its equation $x^2 + y^2 - 4x - 10y + 19 = 0$. M(1,3) is the mid-point of the chord AB.

4

5

- (a) Write down the coordinates of C, the centre of the circle.
- (b) Show that the equation of the chord AB can be written as x = 7 2y.
- 2. A circle, centre C(8,k), has the points P(2,-2) and Q on its circumference as shown.

M(0,2) is the mid-point of the chord PQ.

- (a) Find the coordinates of Q.
- (b) Given that radius CQ is horizontal, write down the value of k, the y-coordinate of C.
- (c) Hence establish the equation of the circle.
- 3. A circle passes through the origin and has the point C(0,5) as its centre.
 - (a) Establish the equation of this circle giving your answer in **expanded form**.
 - (b) The point P(4,k) lies on the circumference of this circle as shown. Find **algebraically** the value of k.
 - (c) Find the equation of the tangent to the circle at P.

1

3

4. Two circles, **both with the same radius**, touch extenally at T as shown below. The circle with A as its centre has equation $x^2 + y^2 - 4x + 2y - 15 = 0$.

Line L₁ is the common tangent to both circles through T and has as its equation y = 2x + 5.

- (a) Find the coordinates of T, the point of tangency.
- (b) Find the coordinates of B and hence write down the equation of the other circle in the diagram.

2

4

1

5. Consider the diagram below.

The circle centre C_1 has as its equation $(x + 4)^2 + y^2 = 52$. The point P(0, k) lies on the circumference of this circle and the tangent to this circle through P has been drawn.

A second circle with centre C_2 is also shown.

(a) What is the value of *k*?

(c)

(b) Hence find the equation of the tangent through P.

- The tangent through P passes through C_2 the centre of the second circle. State the coordinates of C_2 .
- (d) Given that the second circle has a radius of 8 units, calculate the distance marked *d* on the diagram, giving your answer correct to 1 decimal place.
 3

Question 1

(a) •1 C(2,5) •1 $M_{cm} = \frac{5-3}{2-1} = 2$ (b) • 2 $M_{AB} = -\frac{1}{2}$ • 3 $y-3 = -\frac{1}{2}(x-1)$ 2y - 6 = -x + 1x = 7 - 2y $(7-2y)^{2} + y^{2} - 4(7-2y) - 10y + 19 = 0$ •1 (c) $5y^2 - 30y + 40 = 0$ • 2 (5(y-4)(y-2)-0 : y = 4, y = 2)• 3 y = 4 then x = -1, y = 2 when x = 3• 4

Question 2

- (a) •1 Q(-2,6)
- (b) •1 k = 6
- (c) •1 strategy
 - 2 r can be found from horiz. line but some pupils will use points P and C.
 r² = 6² + 8² = 100
 3 (x 8)² + (y 6)² = 100

Question 3

(a)
•1
$$r = 5$$

•2 $(x-a)^2 + (y-b)^2 = r^2$
•3 $(x-0)^2 + (y-5)^2 = 25$
•4 $x^2 + y^2 - 10y + 25 - 25 = 0$
(b)
•1 $4^2 + k^2 - 10k = 0$
•2 $k^2 - 10k + 16 = 0$
•3 $(k-8)(k-2) = 0$
•4 $\therefore k = 8$
•5 $k = 2$
(c)
•1 $m_r = \frac{2-5}{4-0} = -\frac{3}{4}$
•2 $m_{tan} = \frac{4}{3}$
•3 $y-2 = \frac{4}{3}(x-4)$

Question 4

(a) ans: (-2,1)

(3 marks)

_1	substitutes eq.of line in eq. of circle	_1	$x^{2} + (2x+5)^{2} - 4x + 2(2x+5) - 15 = 0$
	simplifies and solves for x		$5(x+2)^2 = 0; x = -2$
_	substitutes to find <i>y</i>	_	y = 2(-2) + 5; y = 1

(b) ans:
$$(x+6)^2 + (y-3)^2 = 20$$
 (3 marks)

_1	establishes coordinates of B	_1	B(-6,3)
_2	finds r^2	_2	$r^2 = 20$
3	substitutes into general circle equation	3	$(x+6)^2 + (y-3)^2 = 20$

Question 5

(a)	ans: $k = 6$	(2 marks)
	1 knows to substitute point 2 establishes value of k	
(b)	ans: $y = -\frac{2}{3}x + 6$	(4 marks)
	 finds coordinates of C₁ finds gradient of radius finds gradient of tangent substitutes into formula 	$\begin{array}{ccc} -1 & C(-4,0) \\ -2 & m_{C_1P} = \frac{6}{4} = \frac{3}{2} \\ -3 & m_{\tan} - \frac{2}{3} \\ -4 & y = -\frac{2}{3}x + 6 \end{array}$
(c)	ans: $C_2(9, 0)$	(1 mark)
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ subs point, solves for x and standard	ates point $_{-1}^{1} 0 = -\frac{2}{3}x + 6; x = 9; (9,0)$

(d) ans: 2.2 units

(3 marks)

1 finds radius C ₁ circle	1 radius C ₁ = 7.2
² finds distance between centres	2 C ₁ C ₂ = 13
$angle^3$ establishes d	$\int_{-3}^{3} d = (7.2 + 8) - 13 = 2.2$