Higher Polynomials \& Quadratics Exam Revision

1. The remainder when $2 x^{3}+x^{2}-1$ is divided by $x-2$ is
A 9
B 5
C 19
D -13
2. The quadratic equation $4 k x^{2}-8 x+k=0$ has equal roots.

The value of k, where $k>0$ is
A 4
B 2
C 0
D -2
3. The remainder when $x^{3}-11 x+10$ is divided by $(x+3)$ is
A 52
B 16
C 4
D -24
4. The equation $2 x^{2}+8=k x$ has no real roots. k must take the values
A ± 8
B $-8<k<8$
C undefined
D $k<-8$ or $k>8$
5. For which value(s) of x is the function $f(x)=\frac{3}{(x+3)(x-2)}$ undefined?
A 3
B 3 and - 2
C -3 and 2
D -6
6. The maximum value of $\frac{12}{x^{2}-4 x+10}$ is
A 2
B -2
C 6
D -6
7. A ball is thrown upwards reaching a height of ' h ' metres after ' t ' seconds where $h(t)=2+12 t-3 t^{2}$. The time taken, in seconds, to reach its maximum height is
A 2
B 3
C 4
D 5
8. Given that $x-1$ is a factor of $x^{3}-6 x^{2}+p x-6$ then p equals
A -13
B -1
C 1
D 11
9. When $4 x^{3}+p x^{2}-x+1$ is divided by $2 x+1$, the remainder is $-1 . p$ is equal to
A -8
B -4
C -1
D 4
10. The set of factors of $2 x^{3}+3 x^{2}-5 x-6$ contains which of the following factors
(1) $(x+1)$
(2) $(x+2)$
(3) $(2 x-3)$
A (1) only
B (2) only
C (3) only
D (1), (2) and (3)
11. If $2 x^{2}-12 x+11$ is expressed in the form $2(x-b)^{2}+c$, what is the value of c ?
A -25
B -7
C 11
D 23
12. The quadratic equation with roots $7+\sqrt{5}$ and $7-\sqrt{5}$ can be written as
A $x^{2}+7 x+5=0$
B $x^{2}-14 x+44=0$
C $x^{2}-14 x+24=0$
D $x^{2}+14 x+44=0$
13. Given that $x=-2$ and $x=1$ are two roots of the equation $x^{3}+p x^{2}-6 x+q=0$, establish the values of p and q and hence find the third root of the equation.
14. (a) If $k=\frac{(x-1)^{2}}{x^{2}+4}$, where k is a real number, show clearly that

$$
\begin{equation*}
(k-1) x^{2}+2 x+(4 k-1)=0 \tag{3}
\end{equation*}
$$

(b) Hence find the value of k given that the equation $(k-1) x^{2}+2 x+(4 k-1)=0$ has equal roots and $k>0$.
15. Two functions, defined on suitable domains, are given as

$$
f(x)=x\left(x^{2}-1\right) \quad \text { and } \quad g(x)=x-1
$$

(a) Show that the composite function, $h(x)=f(g(x))$, can be written in the form $h(x)=a x^{3}+b x^{2}+c x$, where a, b and c are constants, and state the value(s) of a, b and c.
(b) Hence solve the equation $h(x)=6$, for x, showing clearly that there is only one solution.
16. A curve has as its equation $y=(p+1) x^{3}-3 p x^{2}+4 x+1$, where p is a positive integer.
(a) Find $\frac{d y}{d x}$.
(b) Hence establish the value of p given that this curve has only one stationary point.
17. A householder is considering two different designs for a conservatory.

One design has a rectangular base measuring $3 x-k$ by $k+1$ metres and the other design is square based with side $x+2$ metres. Both x and k are constants.

(a) With both designs having the same base area, show clearly that the following equation can be formed.

$$
x^{2}+(1-3 k) x+\left(k^{2}+k+4\right)=0
$$

(b) Given that the above equation has equal roots, find first the value of k, and then the base area of each conservatory in square metres.
18. Express the function $f(x)=3 x^{2}-6 x+11$ in the form $p(x-q)^{2}+r$.
19. Consider the isosceles triangle and the rectangle below.

The triangle has a base measuring $2 x$ and a vertical height of $x+k$.
The rectangle has dimensions $2 k-2$ by x as shown.
All dimensions are in centimetres.

(a) Given that the area of the rectangle is $4 \mathrm{~cm}^{2}$ more than the area of the triangle, show clearly that the following equation can be formed.

$$
x^{2}+(2-k) x+4=0
$$

(b) Hence find k, given that the equation $x^{2}+(2-k) x+4=0$ has equal roots and $k>0$.
(c) Find x when k takes this value and calculate the area of each shape.
20. Two functions f and h are defined on suitable domains as follows :

$$
f(x)=2 x-2 \text { and } \quad h(x)=\frac{4 \frac{1}{2}}{x+2} .
$$

(a) Given that $g(x)=f(h(x))$ show that $g(x)$ can be written as

$$
\begin{equation*}
g(x)=\frac{5-2 x}{x+2} \tag{3}
\end{equation*}
$$

(b) Hence solve algebraically the equation $g(x)=x^{2}$.
21. (a) If $3 x^{3}-k x^{2}-38 x-24$ is exactly divisible by $(x+3)$, find the value of k.
(b) Hence, write the expression in fully factorised form when k takes this value.
22. The equation $k x^{2}+(k-3) x+k=0$ has equal roots.

Find the value of k given that $k>0$.
23. An equation is given as $\frac{5(k-2)}{x}=x+2(2-k)$, where $x \neq 0$.
(a) Show clearly that this equation can be written in the form

$$
\begin{equation*}
x^{2}+(4-2 k) x+(10-5 k)=0 \tag{2}
\end{equation*}
$$

(b) Hence find the values of k which would result in the above equation having equal roots.
24. If $x^{3}+p x+30$ is exactly divisible by $x-2$ find the value of p and hence factorise the expression completely.
25. (a) If $3 x^{3}-k x^{2}-38 x-24$ is exactly divisible by $(x+3)$, find the value of k.
(b) Hence, write the expression in fully factorised form when k takes this value.
26. The equation $k x^{2}+(k-3) x+k=0$ has equal roots.

Find the value of k given that $k>0$.

