Higher Vectors Exam Revision

3. Two vectors are defined as $V_1 = \sqrt{6}i + j + \sqrt{8}k$ and $V_2 = 4i + \sqrt{24}j + a\sqrt{3}k$, where *a* is a constant and all coefficients of *i*, *j* and *k* are greater than zero.

Given that the vectors V_1 and V_2 are perpendicular, calculate the value of a.

4. Consider the vector diagram.

- (a) Express displacement \overrightarrow{PR} in terms of vectors a and b.
- (b) Given that vectors *a* and *b* have magnitudes of 2 units and 3 units respectively, evaluate the scalar product *a*.*b*.
- (c) Hence evaluate the scalar product $v \cdot u$ when v = PQ = 2a and u = PR.

1

4

a

2

5

5. Quadrilateral PQRS has vertices P(0,1,-4), Q(3,6,1), R(9,-5,-1) and S(7,-6,-3).

T is a point on diagonal PR.

(a) Given that
$$\frac{PT}{TR} = \frac{2}{1}$$
, establish the coordinates of T. 4

(b) Prove that Q, T ans S are collinear and state the ratio in which T divides QS. 4

- 6. L, M and N are the points (2, 0, -1), (4, -6, 8) and (-5, 7, 0) respectively.Calculate the size of angle LMN.
- 7. The diagram shows a wire framework in the shape of a cuboid with the edges parallel to the axes.

Relative to these axes, A, B, C and H have coordinates (1, 3, 4), (2, 3, 4), (2, 7, 4) and (1, 7, 9) respectively.

- (a) State the lengths of AB, AD and AE.
 (b) Write down the components of HB and HC and hence or otherwise calculate the size of angle BHC.
- 8. Given that $a \cdot (a + b) = 26$, |a| = 4 and |b| = 5, calculate the size of the angle between a and b.

5

3

Question 1

(a) i)
$$\vec{EF} = \begin{pmatrix} -2\\ 4\\ 1 \end{pmatrix}$$

ii) FG = 2EF
 \therefore FG and EF are parallel
Common point F
 \therefore collinear

(b) P(-3 ,3 ,-4)

Question 2

(a) $\vec{ST}.\vec{SU} = 2$ (b) 79.1°

Question 3

• 1
$$V_1 = \begin{pmatrix} \sqrt{6} \\ 1 \\ \sqrt{8} \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 4 \\ \sqrt{24} \\ a\sqrt{3} \end{pmatrix}$

• 2 If perp. than
$$V_1 \cdot V_2 = 0$$

• 3 $V_1 \cdot V_2 = 4\sqrt{6} + \sqrt{24} + a\sqrt{24} = 0$
• 4 $4\sqrt{6} + 2\sqrt{6} + 2a\sqrt{6} = 0$
 $\therefore 2a = -6 \implies a = -3$

Question 4

(a) •1
$$\overrightarrow{PR} = a \cdot b$$

(b) •1
$$a.b = |a| |b| \cos\theta$$
 (or equiv)
•2 $a.b = 2 \times 3 \times \frac{1}{2} = 3$

(c)
•1
$$v.u = 2a.(a-b)$$

•2 $v.u = 2a.a - 2a.b$
•3 $v.u = 2|a|^2 - 2a.b$
•4 $v.u = 2(2^2) - 2(3)$
•5 $v.u = 2$

Question 5

(a) •1
$$PT = 2TR$$

•2 $t-p = 2(r-t)$
•3 $3t = 2r + p$

(b) •1 \vec{QT} and \vec{TS}

• 2
$$\vec{QT} = \begin{pmatrix} 3 \\ -9 \\ -3 \end{pmatrix}$$
, $\vec{TS} = \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix}$
• 2 Since $OT = 2TS$ and T is a set

• 3 Since QT=3TS, and T is a common point, then Q,T & S are collinear. • 4 in the ratio 3:1

Question 6 ans: 30.5°

$$_{-1}^{1}$$
 finds ML and MN

- _2 finds magnitudes
- _3 finds scalar product
- 4 substitutes into formula
- $_{5}^{5}$ finds angle

Question 7

•¹
$$AB = 1, AD = 4, AE = 5$$

•² $\overrightarrow{HB} = \begin{pmatrix} 1 \\ -4 \\ -5 \end{pmatrix}$
•³ $\overrightarrow{HC} = \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}$
•⁴ $\overrightarrow{HB.HC} = 1 + 0 + 25 = 26$
•⁵ magnitude of HB = $\sqrt{42}$
•⁶ magnitude of HC = $\sqrt{26}$
•⁷ cos HBC = (26) / $\sqrt{42}\sqrt{26}$
•⁸ HBC = 38.1° or 0.665 radians

Questions 10

ans: 60°

- _1 multiplies out brackets _2 substitutes values
- 3 finds values for $\cos\theta$ and finds θ

$$-\overset{1}{\operatorname{ML}} = \begin{pmatrix} -2\\6\\-9 \end{pmatrix}; \overset{2}{\operatorname{MN}} = \begin{pmatrix} -9\\13\\-8 \end{pmatrix}$$
$$\overset{2}{\operatorname{ML}} = 11; \quad |\overset{2}{\operatorname{MN}}| = \sqrt{314}$$
$$\overset{3}{\operatorname{ML}} \overset{2}{\operatorname{MN}} = 18 + 78 + 72 = 168$$
$$\overset{4}{\operatorname{cos}} \theta = \frac{168}{11\sqrt{314}}$$
$$\overset{5}{\operatorname{d}} \theta = 30 \cdot 5^{\circ}$$

$$\begin{array}{ccc} \overset{1}{-} & a \cdot a + a \cdot b \\ \overset{2}{-} & 4^2 + 4 \times 5 \times \cos \theta = 26 \\ \overset{3}{-} & \cos \theta = \frac{1}{2}; \theta = 60^{\circ} \end{array}$$