Higher Vectors Exam Revision

1. (a) E, F and G have coordinates $(1,4,-2),(-1,8,-1)$ and $(-5,16,1)$ respectively.
(i) Write down the components of $\overrightarrow{\mathrm{EF}}$.
(ii) Hence show that the points E, F and G are collinear.
(b) The point P divides QR in the ratio 2:3 as shown in the diagram.

Find the coordinates of P .

2. The diagram shows triangle STU where

$$
\overrightarrow{\mathrm{ST}}=\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right) \quad \text { and } \quad \overrightarrow{\mathrm{SU}}=\left(\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right)
$$

(a) Find the value of $\overrightarrow{\mathrm{ST}} \cdot \overrightarrow{\mathrm{SU}}$.
(b) Use the result of (a) to find the size of angle TSU.

3. Two vectors are defined as $\quad V_{1}=\sqrt{6} \boldsymbol{i}+\boldsymbol{j}+\sqrt{8} \boldsymbol{k}$ and $\quad V_{2}=4 \boldsymbol{i}+\sqrt{24} \boldsymbol{j}+a \sqrt{3} \boldsymbol{k}$, where a is a constant and all coefficients of $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} are greater than zero.

Given that the vectors V_{1} and V_{2} are perpendicular, calculate the value of a.
4. Consider the vector diagram.
$\overrightarrow{\mathrm{SR}}$ represents vector \boldsymbol{a} and $\overrightarrow{\mathrm{SP}}$ vector \boldsymbol{b}.
Angle PSR $=60^{\circ}$.

(a) Express displacement $\overrightarrow{\mathrm{PR}}$ in terms of vectors \boldsymbol{a} and \boldsymbol{b}.
(b) Given that vectors \boldsymbol{a} and \boldsymbol{b} have magnitudes of 2 units and 3 units respectively, evaluate the scalar product $\boldsymbol{a} \cdot \boldsymbol{b}$.
(c) Hence evaluate the scalar product $\boldsymbol{v} \cdot \boldsymbol{u}$ when $\boldsymbol{v}=\overrightarrow{\mathrm{PQ}}=2 \boldsymbol{a}$ and $\boldsymbol{u}=\overrightarrow{\mathrm{PR}}$.
5. $\mathrm{Quadrilateral} \operatorname{PQRS}$ has vertices $\mathrm{P}(0,1,-4), \mathrm{Q}(3,6,1), \mathrm{R}(9,-5,-1)$ and $\mathrm{S}(7,-6,-3)$.

T is a point on diagonal PR.

(a) Given that $\frac{P T}{T R}=\frac{2}{1}$, establish the coordinates of T .
(b) Prove that Q, T ans S are collinear and state the ratio in which T divides QS .
6. L, M and N are the points $(2,0,-1),(4,-6,8)$ and $(-5,7,0)$ respectively.

Calculate the size of angle LMN.
7. The diagram shows a wire framework in the shape of a cuboid with the edges parallel to the axes.

Relative to these axes, A, B, C and H have coordinates (1, 3, 4), (2, 3, 4), (2, 7, 4) and $(1,7,9)$ respectively.
(a) State the lengths of AB, AD and AE .
(b) Write down the components of HB and HC and hence or otherwise calculate the size of angle BHC.
8. Given that $\boldsymbol{a} \cdot(\boldsymbol{a}+\boldsymbol{b})=26,|\boldsymbol{a}|=4$ and $|\boldsymbol{b}|=5$, calculate the size of the angle between \boldsymbol{a} and \boldsymbol{b}.

Question 1

(a) i) $\overrightarrow{E F}=\left(\begin{array}{c}-2 \\ 4 \\ 1\end{array}\right)$
ii) $\mathrm{FG}=2 \mathrm{EF}$
$\therefore \mathrm{FG}$ and EF are parallel
Common point F
\therefore collinear
(b) $\mathrm{P}(-3,3,-4)$

Question 2

(a) $\quad \overrightarrow{S T} \cdot \overrightarrow{S U}=2$
(b) $79 \cdot 1^{\circ}$

Question 3

-1 $V_{1}=\left(\begin{array}{c}\sqrt{6} \\ 1 \\ \sqrt{8}\end{array}\right), V_{2}=\left(\begin{array}{l}4 \\ \sqrt{24} \\ a \sqrt{3}\end{array}\right)$
-2 If perp. than $V_{1} \cdot V_{2}=0$

- $3 V_{1} \cdot V_{2}=4 \sqrt{6}+\sqrt{24}+a \sqrt{24}=0$
- $4 ~ 4 \sqrt{6}+2 \sqrt{6}+2 a \sqrt{6}=0$

$$
\therefore 2 a=-6 \rightarrow a=-3
$$

Question 4

(a) $\cdot 1 \quad \overrightarrow{P R}=a-b$
(b) $\bullet 1 \quad a \cdot b=|a||b| \cos \theta$ (or equiv)

- $2 a \cdot b=2 \times 3 \times \frac{1}{2}=3$
(c) $\cdot 1 \quad v \cdot u=2 a \cdot(a-b)$
- 2 v.u $=2 a \cdot a-2 a \cdot b$
- 3 v. $u=2|a|^{2}-2 a \cdot b$
- 4 v. $u=2\left(2^{2}\right)-2(3)$
- $5 v . u=2$

Question 5

(a) $\cdot 1 \quad P T=2 T R$

- $2 \underset{\sim}{t}-p=2(\underset{\sim}{r}-\underset{\sim}{t})$
- $33 t=2 r+p$
- $4 \mathrm{~T}(6,-3,-2)$
(b) $\quad 1 \quad \overrightarrow{Q T}$ and $\overrightarrow{T S}$
- $2 \overrightarrow{Q T}=\left(\begin{array}{c}3 \\ -9 \\ -3\end{array}\right), \overrightarrow{T S}=\left(\begin{array}{c}1 \\ -3 \\ -1\end{array}\right)$
- 3 Since $Q T=3 T S$, and T is a common point, then $Q, T \& S$ are collinear.
- 4 in the ratio 3:1

Question 6 ans: $\mathbf{3 0 . 5}{ }^{\circ}$

${ }_{-}^{1}$ finds $\overrightarrow{\mathrm{ML}}$ and $\overrightarrow{\mathrm{MN}}$
_ ${ }^{2}$ finds magnitudes

- ${ }^{3}$ finds scalar product
_ ${ }^{4}$ substitutes into formula
- ${ }^{5}$ finds angle

$$
\begin{array}{ll}
{ }_{-}^{1} & \overrightarrow{\mathrm{ML}}=\left(\begin{array}{c}
-2 \\
6 \\
-9
\end{array}\right) ; \overrightarrow{\mathrm{MN}}=\left(\begin{array}{c}
-9 \\
13 \\
-8
\end{array}\right) \\
-^{2} & |\overrightarrow{\mathrm{ML}}|=11 ;|\overrightarrow{\mathrm{MN}}|=\sqrt{314} \\
-^{3} & \overrightarrow{\mathrm{ML}} \cdot \overrightarrow{\mathrm{MN}}=18+78+72=168 \\
-^{4} & \cos \theta=\frac{168}{11 \sqrt{314}} \\
-^{5} & \theta=30 \cdot 5^{\circ}
\end{array}
$$

Question 7

-1 $A B=1, A D=4, A E=5$
. $2 \overrightarrow{\mathrm{HB}}=\left(\begin{array}{r}1 \\ -4 \\ -5\end{array}\right)$
. ${ }^{3} \overrightarrow{\mathrm{HC}}=\left(\begin{array}{r}1 \\ 0 \\ -5\end{array}\right)$
${ }^{4} \overrightarrow{\mathrm{HB}} \cdot \overrightarrow{\mathrm{HC}}=1+0+25=26$
${ }^{5}$ magnitude of $\mathrm{HB}=\sqrt{42}$
. ${ }^{6}$ magnitude of $\mathrm{HC}=\sqrt{26}$
${ }^{.7} \cos \mathrm{HBC}=(26) / \sqrt{42} \sqrt{26}$
$.{ }^{8} \mathrm{HB} \hat{\mathrm{C}}=38.1^{\circ}$ or 0.665 radians

Questions 10

ans: $\mathbf{6 0}^{\boldsymbol{\circ}}$
_ multiplies out brackets
${ }^{1} \quad \boldsymbol{a} . \boldsymbol{a}+\boldsymbol{a} . \boldsymbol{b}$
_ ${ }^{2}$ substitutes values
$_^{2} 4^{2}+4 \times 5 \times \cos \theta=26$
${ }^{3}$ finds values for $\cos \theta$ and finds θ
${ }^{3} \quad \cos \theta=\frac{1}{2} ; \theta=60^{\circ}$

